刘启凡,南方科技大学电子与电气工程系博士后,主要从事人工智能方面研究。
研究方向
论文
- Liu Q, Zhao Z, Cao W, et al. Residual proportion multilayer perceptron for few-shot classification[C]//2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2021: 1-6.
- Liu Q, Cao W. Geometric algebra graph neural network for cross-domain few-shot classification[J]. Applied Intelligence, 2022, 52(11): 12422-12435.
- Zhao Z, Liu Q, Cao W, et al. Self-guided information for few-shot classification[J]. Pattern Recognition, 2022, 131: 108880.
- Liu Q, Chen Y, Cao W. Dual-domain reciprocal learning design for few-shot image classification[J]. Neural Computing and Applications, 2023: 1-14.
- Liu Q, Cao W, He Z. Cycle Optimization Metric Learning for Few-Shot Classification[J]. Pattern Recognition, 2023: 109468.
- Zhang R, Liu Q. Learning with few samples in deep learning for image classification, a mini-review[J]. Frontiers in Computational Neuroscience, 2023.
专利
*车辆检测方法、装置及计算机可读存储介质,何志权,刘启凡,曹文明,专利号:ZL 2019 1 0029834.8
*基于小波变换的渐进式深度卷积网络图像识别方法及装置,何志权,曹文明,刘启凡,专利号:ZL 2019 1 0783600.2
*图像数据的压缩传输方法、系统和计算机可读存储介质,何志权,曹文明,刘启凡,专利号:ZL 2019 1 0811971.7
*一种基于深度神经网络的OCR识别方法及装置,曹文明,刘启凡,何志权,专利号:ZL 2019 1 0904514.2